Variational Methods for the Solution of Problems of Equilibrium and Vibrations
نویسنده
چکیده
As Henri Poincaré once remarked, "solution of a mathematical problem" is a phrase of indefinite meaning. Pure mathematicians sometimes are satisfied with showing that the non-existence of a solution implies a logical contradiction, while engineers might consider a numerical result as the only reasonable goal. Such one sided views seem to reflect human limitations rather than objective values. In itself mathematics is an indivisible organism uniting theoretical contemplation and active application. This address will deal with a topic in which such a synthesis of theoretical and applied mathematics has become particularly convincing. Since Gauss and W. Thompson, the equivalence between boundary value problems of partial differential equations on the one hand and problems of the calculus of variations on the other hand has been a central point in analysis. At first, the theoretical interest in existence proofs dominated and only much later were practical applications envisaged by two physicists, Lord Rayleigh and Walther Ritz ; they independently conceived the idea of utilizing this equivalence for numerical calculation of the solutions, by substituting for the variational problems simpler approximating extremum problems in which but a finite number of parameters need be determined. Rayleigh, in his classical work—Theory of sound—and in other publications, was the first to use such a procedure. But only the spectacular success of Walther Ritz and its tragic circumstances caught the general interest. In two publications of 1908 and 1909 [39], Ritz, conscious of his imminent death from consumption, gave a masterly account of the theory, and at the same time applied his method to the calculation of the nodal lines of vibrating plates, a problem of classical physics that previously had not been satisfactorily treated. Thus methods emerged which could not fail to attract engineers and physicists; after all, the minimum principles of mechanics are more suggestive than the differential equations. Great successes in applications were soon followed by further progress in the understanding of the theoretical background, and such progress in turn must result in advantages for the applications.
منابع مشابه
Strong convergence of a general implicit algorithm for variational inequality problems and equilibrium problems and a continuous representation of nonexpansive mappings
We introduce a general implicit algorithm for finding a common element of the set of solutions of systems of equilibrium problems and the set of common fixed points of a sequence of nonexpansive mappings and a continuous representation of nonexpansive mappings. Then we prove the strong convergence of the proposed implicit scheme to the unique solution of the minimization problem on the so...
متن کاملAn Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method
The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...
متن کاملStrong convergence for variational inequalities and equilibrium problems and representations
We introduce an implicit method for nding a common element of the set of solutions of systems of equilibrium problems and the set of common xed points of a sequence of nonexpansive mappings and a representation of nonexpansive mappings. Then we prove the strong convergence of the proposed implicit schemes to the unique solution of a variational inequality, which is the optimality condition for ...
متن کاملCommon solutions to pseudomonotone equilibrium problems
In this paper, we propose two iterative methods for finding a common solution of a finite family of equilibrium problems for pseudomonotone bifunctions. The first is a parallel hybrid extragradient-cutting algorithm which is extended from the previously known one for variational inequalities to equilibrium problems. The second is a new cyclic hybrid extragradient-cutting algorithm....
متن کاملOn Fixed Point Results for Hemicontractive-type Multi-valued Mapping, Finite Families of Split Equilibrium and Variational Inequality Problems
In this article, we introduced an iterative scheme for finding a common element of the set of fixed points of a multi-valued hemicontractive-type mapping, the set of common solutions of a finite family of split equilibrium problems and the set of common solutions of a finite family of variational inequality problems in real Hilbert spaces. Moreover, the sequence generated by the proposed algori...
متن کامل